If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+60x=0
a = 30; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·30·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*30}=\frac{-120}{60} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*30}=\frac{0}{60} =0 $
| —x2—15x—54=0 | | 21,5-6,5=x | | -3x-1-8x=-23 | | 7+x=19-2x | | 5x+6-2x=-2x-1 | | 53+8x=133 | | 25=1/5h+5 | | -25=-1/5h+5 | | F(x)=-3x^2-4 | | 50x=129 | | 3(x+1=6(x+3) | | 5.7p+0.3=5.9-2.3p | | 4(x+5)=x-19 | | y/3+2=7-2y/3 | | √x+1-√x-1=√2x-1 | | 25x-4=429 | | 9+3p-6=0 | | -3m+7-15m=79 | | 5(w-6)=4(2w-6) | | 5x+12.75=20 | | 7m+32=221 | | 5x+15=10X+5* | | 0.16a=97 | | 1÷5m=2 | | 7p+25=9 | | -4w+14w+5=6w+32 | | .05x+.10x+.25x=4.40 | | 2.x+1=12 | | 5x+10x+25x=4.4 | | -10-2x=-7x | | 3=5x-4x | | x+x+2+x+4=219 |